與 GO Markets 一起走得更遠
與值得信賴的全球經紀商更精明地交易. 低點差, 快速執行, 存款零手續費, 功能強大的交易平台, 以及屢獲殊榮的客戶服務.


獲全球交易者信賴
自2006年以來,GO Markets 憑藉嚴格監管、以客為先的服務及屢獲殊榮的教育中心,協助數以十萬計的交易者自信而精準地達成交易目標。


















































與 GO Markets 一起更進一步
透過機構級工具、無縫執行及屢獲殊榮的客戶服務,探索數以千計的交易機會。開戶快捷簡單。
.png)
S&P 500 and ASX Rally as Big Banks Drive Markets
Both the S&P 500 and ASX have rallied on the back of stronger-than-expected major bank earnings reports on both sides of the Pacific.
In the US, Bank of America reported a 31% year-over-year increase in earnings per share at $1.06, exceeding Wall Street's estimate of $0.95. Meanwhile, Morgan Stanley delivered a record-breaking quarter with EPS of $2.80, a nearly 49% increase from the same period last year.

On the Australian front, the benchmark ASX 200 leapt 1.03% to 8990.99, with all four major Australian banks playing a major role. CBA closed 1.45% higher, Westpac 1.98%, NAB 1.87%, and ANZ 0.53%.
These strong bank results indicate broader economic strength, despite recent concerns about US-China trade tensions. US Treasury Secretary Scott Bessent emphasised that Washington did not want to escalate trade conflict with China and noted that President Trump is ready to meet Chinese President Xi Jinping in South Korea later this month.
With the third-quarter earnings season just getting underway, these early positive results from financial institutions could prove as the start of continued market strength through to the end of the year.
U.S. Government Shutdown Likely to Last Into November
Washington remains gridlocked as the U.S. enters its 16th day of shutdown. With no signs of compromise on the horizon, it appears increasingly likely the shutdown will extend into November and could even compromise the Thanksgiving holiday season.
Treasury Secretary Scott Bessent has warned "we are starting to cut into muscle here" and estimated "the shutdown may start costing the US economy up to $15 billion a day."
The core issue driving the shutdown is healthcare policy, specifically the expiring Affordable Care Act subsidies. Democrats are demanding these subsidies be extended, while Republicans argue this issue can be addressed separately from government funding.
The Trump administration has taken steps to blunt some of the shutdown's immediate impact, including reallocating funds to pay active-duty soldiers this week and infusing $300 million into food aid programs.
However, House Speaker Mike Johnson has emphasised these are merely "temporary fixes" that likely cannot be repeated at the end of October when the next round of military paychecks is scheduled.

By the end of this week, this shutdown will become the third-longest in U.S. history. If it continues into November 4th, it will surpass the 34-day shutdown of 2018-2019 to become the longest government shutdown ever recorded.
This prolonged shutdown adds another layer of volatility to markets. While previous shutdowns have typically had limited long-term market impacts, the unprecedented length and timing of this closure, combined with its expanding economic toll, warrant closer attention as we move toward November.
Trump Announces Modi Has Agreed to Stop Buying Russian Oil
Yesterday, Trump announced that Indian Prime Minister Narendra Modi has agreed to stop purchasing Russian oil. He stated that Modi assured him India would halt Russian oil imports "within a short period of time," describing it as "a big step" in efforts to isolate Moscow economically.
The announcement comes after months of trade tensions between the US and India. In August, Trump imposed 50% tariffs on Indian exports to the US, doubling previous rates and specifically citing India's Russian oil purchases as a driving factor.

India has been one of Russia's top oil customers alongside China in recent years. Both countries have taken advantage of discounted Russian oil prices since the start of the Ukraine invasion.
Analysis suggests India saved between $2.5 billion to $12.6 billion since 2022 by purchasing discounted Russian crude compared to other sources, helping support its growing economy of 1.4 billion people.
Trump suggested that India's move would help accelerate the end of the Ukraine war, stating: "If India doesn't buy oil, it makes it much easier." He also mentioned his intention to convince China to follow suit: "Now I've got to get China to do the same thing."
The Indian embassy in Washington has not yet confirmed Modi's commitment. Markets will be closely watching for official statements from India and monitoring oil trading patterns in the coming weeks to assess the potential impact on global energy flows and prices.
Chart of the Day - Gold futures CFD (XAUUSD)

Most traders understand EA portfolio balance through the lens of traditional risk management — controlling position sizes, diversifying currency pairs, or limiting exposure per trade.
But in automated trading, balance is about deliberately constructing a portfolio where different strategies complement each other, measuring their collective performance, and actively managing the mix based on those measurements.
The goal is to create a “book” of EAs that can help diversify performance over time, even when individual strategies hit rough patches.
A diversified mix of EAs across timeframes and assets can, in some cases, reduce reliance on any single strategy. This approach reduces dependency on any single EA’s performance, smooths your overall equity curve, and builds resilience across changing market conditions.
It’s about running the right mix, identifying gaps in your coverage, and viewing your automated trading operation as an integrated whole rather than a collection of independent systems.
Basic Evaluation Metrics – Your Start Point

Temporal (timeframe) Balancing
When combined, a timeframe balance (even on the same model and instrument) can help flatten equity swings.
For example, a losing phase in a fast-acting M15 EA can often coincide with a profitable run in an H4 trend model.
Combining this with some market regime and sessional analysis can be beneficial.

Asset Balance: Managing Systemic Correlation Risk
Running five different EAs on USDJPY might feel diversified if each uses different entry logic, even though they share the same systemic market driver.
But in an EA context, correlation measurement is not necessarily between prices, but between EA returns (equity changes) relating to specific strategies in specific market conditions.
Two EAs on the same symbol might use completely different logic and thus have near-zero correlation.
Conversely, two EAs on a different symbol may feel as though they should offer some balance, but if highly correlated in specific market conditions may not achieve your balancing aim.

In practical terms, the next step is to take this measurement and map it to potential actionable interventions.

For example, if you have a EURUSD Trend EA and a GBPUSD Breakout EA with a correlation of 0.85, they are behaving like twins in performance related to specific market circumstances. And so you may want to limit exposure to some degree if you are finding that there are many relationships like this.
However, if your gold mean reversion EA correlates 0.25 compared to the rest of your book, this may offer some balance through reducing portfolio drawdown overlap.
Directional and Sentiment Balance
Markets are commonly described as risk-on or risk-off. This bias at any particular time is very likely to impact EA performance, dependent on how well balanced you are to deal with each scenario.
You may have heard the old market cliché of “up the staircase and down the elevator shaft” to describe how prices may move in alternative directions. It does appear that optimisation for each direction, rather than EAs that trade long and short, may offer better outcomes as two separate EAs rather than one catch-all.

Market Regime and Volatility Balance
Trend and volatility states can have a profound impact on price action, whether as part of a discretionary or EA trading system. Much of this has a direct relationship to time of day, including the nature of individual sessions.
We have a market regime filter that incorporates trend and volatility factors in many EAs to account for this. This can be mapped and tested on a backtest and in a live environment to give evidence of strategy suitability for specific market conditions.
For example, mean reversion strategies may work well in the Asian session but less so in strongly trending markets and the higher volatility of the early part of the US session.
As part of balancing, you are asking questions as to whether you actually have EA strategies suited to different market regimes in place, or are you using these together to optimise book performance?
The table below summarises such an approach of regime vs market mapping:

Multi-Level Analysis: From Composition to Interaction
Once your book is structured, the challenge is to turn it into something workable. An additional layer of refinement that turns theory and measurement into something meaningful in action is where any difference will be made.
This “closing the circle” is based on evidence and a true understanding of how your EAs are behaving together. It is the step that takes you to the point where automation can begin to move to the next level.
Mapping relationships with robust and detailed performance evaluation will take time to provide evidence that these are actually making a difference in meeting balancing aims.
To really excel, you should have systems in place that allow ongoing evaluation of the approaches you are using and advise of refinements that may improve things over time.

What Next? – Implementing Balance in Practice
Theory must ultimately translate into an executable EA book. A plan of action with landmarks to show progress and maintain motivation is crucial in this approach.
Defining classification tags, setting risk weights, and building monitoring dashboards are all worth consideration.
Advanced EA traders could also consider a supervisory ‘Sentinel’ EA, or ‘mothership’ approach, to enable or disable EAs dynamically based on underlying market metrics and external information integrated into EA coding decision-making.
Final Thoughts
A balanced EA portfolio is not generated by accident; it is well-thought-out, evidence-based and a continuously developing architecture. It is designed to offer improved risk management across your EA portfolio and improved trading outcomes.
Your process begins with mapping your existing strategies by number, asset, and timeframe, then expands into analysing correlations, directional bias, and volatility regimes.
When you reach the stage where one EA’s drawdown is another’s opportunity, you are no longer simply trading models but managing a system of EA systems. To finish, ask yourself the question, “Could this approach contribute to improved outcomes over time?”. If your answer is “yes,” then your mission is clear.
If you are interested in learning more about adding EAs to your trading toolbox, join the new GO EA Programme (coming soon) by contacting [email protected].

The rise of algorithmic trading has made it possible for traders of all levels to execute trades with precision and discipline 24/7.
However, while algorithms, such as Expert Advisors (EAs) used on MT4or MT5, remove emotion from the execution, they cannot remove the human element from trading.
The psychological challenges may be different when using EAs than those facing the discretionary trader, but challenges still exist.
Every automated strategy reflects the trading beliefs, thinking, logic, and discipline of its creator. This is true in development and in a live environment.
The “code” in EA trading should mean more than lines of MQL5. It should be based on a code of conduct that defines the standards by which you operate.
In a world where automation can amplify both success and mistakes, a structured set of principles helps ensure EAs remain a tool for improvement, not a shortcut to risk.
1. Use EAs as Trading Tools, Not Replacements for Good Practice
EAs are instruments, tools of the trade, not a replacement for skill, judgment, or responsibility. Their role is to supplement a trader’s edge, not substitute for it.
For example, a swing trader who relies on price-action patterns might automate only specific entry conditions to ensure consistency, while continuing to manage exits manually.
Conversely, a systematic trader may automate the entire process but still monitor performance against broader market regimes as a filter for entering or exiting automated trades.
Before an EA is ever switched on, traders must ask: What problem is this solving for me? Is it improving my execution discipline, making sure I miss fewer trading opportunities, or helping me diversify and trade efficiently across multiple markets?
Automation magnifies intent and thoroughness in peroration, execution and system refinement. If your answer is simply “to make money while I sleep,” the foundation is not enough, and perhaps you should look a little deeper.
2. Design with Clarity and Thoroughness
The design phase is where your EA professionalism begins. Every EA must be built on a clear, rules-based logic that matches the trader’s intent and desire to take advantage of specific price action.
In practice, this means you need to define exactly what the EA is supposed to do from the outset and, equally, what it will not do.
Integrity in design means documenting your logic before you code it. Write out the concept in plain language.
“Enter long when a bullish engulfing candle forms above the 20 EMA during the London session.”
“Exit when RSI crosses below 70 or after two ATRs in profit.”
Once defined, those conditions become the contract between the trader and the code.
Whether you are attempting to code yourself, using a third party to code for you or even using an off-the-shelf EA, ambiguity or lack of clarity should be addressed.
Without this, there will always be a temptation to shift or a failure to recognise the need for refinement.
3. Test with Transparency
Backtesting is often where enthusiasm overtakes discipline. It’s easy to be seduced by an impressive equity curve, yet testing is only valuable when it’s transparent.
Successful EA traders will often treat every backtest as additional data, not exclusive hard validation that an EA definitely perform in a live market environment.
They record settings, market conditions, and measure key metrics, saving results journal and different versions. This allows an objective comparison and sets the foundations for what should be measured on an ongoing basis.
Transparency also means using realistic conditions — spreads, slippage, and ticks rather than OHLC for final testing, all provide a greater quality of metrics that may more accurately mirror live trading.
A good practice is to maintain a “testing log” alongside the EA code. For example:
- Version number
- The purpose of the test (e.g., confirm logic or optimise ATR period for setting stop or take profit levels)
- The conditions under which it was run, including underlying market conditions and arguably directional and sessional differences.
- The interpretation of results (what was learned, not just the numbers)
4. Avoid the Illusion of Certainty
The temptation to fine-tune parameters until a backtest looks flawless is a trap known as overfitting.
It produces systems that may often perform brilliantly on historical data but collapse in a heap in live markets, where other external variables can be equally, if not more influential.
The necessity for and rigour and robustness in testing include approaches such as:
- Forward testing: Running the EA on new data to confirm behaviour.
- Walk-forward analysis: Re-optimising in rolling segments to ascertain whether there is parameter stability.
- Parameter clustering: Checking if profitability holds across a range of values rather than one precise setting. E.g., it will still be profitable if a level of partial close is 40, 50 or 60% of your position.
A robust EA trader accepts uncertainty as reality. A recognition that markets can evolve, conditions often shift, and no single setting is likely to remain optimal forever.
Your goal is durability, not perfection in a single set of market conditions.
An EA that performs moderately well across different conditions is often far more valuable than one that looks brilliant in backtest isolation.
5. Adequate Preparation for Live Execution
The transition from backtest to live trading is not something to take lightly; it is a major operational step. Before going live, traders should have a checklist covering readiness that includes confirmation of logic, appropriate infrastructure, and management of risk.
Steps to achieve this aim can include:
- Running the EA in visual backtest mode to confirm correct trade placement.
- Checking symbol specifications, such as contract size, margin requirement, and swap cost.
- Confirming VPS stability — low latency, sufficient processing power for the number of EAs you are trading, and reliability
- Testing on a demo account first, under live market conditions and then move to a live environment using minimum trading volume before scaling.
EA traders should have a set of minimum values for key metrics such as Net profit vs balance drawdown, win rate, consecutive wins and losses and Sharpe ratios before moving to live.
A full checklist that incorporates minimum testing performance as well as infrastructure management is critical.
6. Manage Risk is About You, Not Your EA
The most dangerous misconception in automated trading is that the EA “handles risk.” It does not. It simply executes your instructions, whether these are good or bad for a particular trade.
As a trader, you remain responsible for every lot size, margin call, and equity swing. Proper capital management means understanding total exposure across all running EAs as a whole, not just an individual one.
Running five EAs, of which risks 1% of account equity per trade is not necessarily diversification, particularly if the assets are heavily correlated.
In the same way that you should be rigorous in decision-making from test to live environment, it is equally important when scaling, i.e., increasing trading lot sizes.
Scaling rules should be data-based and only considered after a defined critical mass of trading activity of a single EA. Only increasing trade size when the EA’s equity curve maintains a positive slope over a rolling period, or when the profit factor exceeds a set threshold for a given number of trades.
Once scaling is taking place beyond the minimum volume, it may be worth considering the implications of the reality that risk is dynamic.
Experimenting with adjusting lot size against the strength of the signal or underlying market conditions for specific EAs may be worthwhile.
7. Monitor, Measure, and Refine
A live EA is not a “set-and-forget” machine. It’s a continuous process that requires observation and refinement on an ongoing basis
Regular and planned reviews of EA performance through appropriate reporting will always reveal valuable insights beyond your overall account balance. Aim to answer questions such as:
- Is the EA behaving as designed?
- Are trade times and volumes consistent with expectations?
- Has the average profit per trade decreased, suggesting a changing market structure?
A disciplined EA trader will use these insights to decide when to pause, adjust, or retire an EA. For instance, if a breakout EA consistently loses during low-volatility sessions, the solution might not be “optimise again” but to restrict trading hours within the parameters.
8. Maintain Operational Discipline
Even the best logic fails if your trading environment is unstable or unsuitable. Operational discipline ensures that the infrastructure supporting EAs is reliable, secure, and constantly monitored for any “events” that may influence the execution of your book of EAs.
This includes maintaining a properly configured VPS (Virtual Private Server) with sufficient CPU capacity and regular monitoring of resource use.
Traders should track activity, confirming that log files are saving correctly, and not only know how to install their EA to trade live (and other files that may be necessary for it to run, e.g., include files) but also how to restart or stop an EA without disrupting open trades.
Operational discipline also extends to record-keeping and organisation of your automated trading performance evaluations and resources. Notes on anything that looks unusual for further review, and systems that dictate when you take actions, are all part of putting the right things in place.
Final Thoughts
Your Code of Conduct for EA Traders is not a rulebook but a roadmap for moving towards excellence in the design, deployment, and management of automated trading systems.
Although each standard can stand alone as something specific to work on, they are also inextricably linked to the whole.
View your automated trading as an extension of who you are and want to become as a trader. An EA can execute your edge, but it cannot replace your accountability for actions, your need for learning and improvement, nor your commitment towards better trading outcomes.
The best traders don’t just build and use algorithms; they build standards of practice and follow through to move towards becoming a successful EA trader.