学习中心
学习中心

市场资讯及洞察

每日财经快讯
TradingView编程系列4:条件框架

在TradingView的Pine Script®中,条件语句是构建智能交易策略和自定义指标的核心工具。Pine Script提供了两种主要的条件结构:if和switch。通过它们,开发者可以根据不同的市场情况动态地控制代码的执行路径,实现逻辑判断和决策处理。

类似于for和while循环,条件结构也可以嵌套使用。你可以在一个if或switch块中包含其他条件或循环结构,从而实现更复杂的逻辑判断。然而,需要注意的是,并非所有Pine Script内置函数都可以在条件结构的本地代码块中调用。例如,像plot()、barcolor()、bgcolor()以及alertcondition()等函数,在本地条件块内不可直接调用。

此外,为了保证代码的可读性和正确性,条件结构内部的本地代码块必须使用四个空格或一个制表符进行缩进。理解和合理运用这些条件结构,是每一位Pine Script开发者编写高效、可维护策略的关键一步。

if 结构具体语法如下:

if <表达式>

    <本地代码块>

{else if <表达式>

    <本地代码块>}

[else

    <本地代码块>]

说明:

  • 方括号 [] 中的部分可以出现零次或一次,大括号 {} 中的部分可以出现零次或多次。
  • <表达式> 必须是布尔类型(bool),或者可以自动转换为布尔类型,这只适用于整数(int)或浮点数(float)值(详见类型系统页面)。
  • <本地代码块> 由零条或多条语句组成,最后可以返回一个值,该值可以是一个元组。代码块必须缩进四个空格或一个制表符。
  • 可以有零条或多条 else if 子句。
  • 可以有零条或一条 else 子句。

执行规则:

  1. 当 if 后的 <表达式> 计算结果为 true 时,执行第一个本地代码块,if 结构执行结束,并返回本地代码块末尾计算得到的值(或元组)。
  2. 当 if 后的 <表达式> 计算结果为 false 时,会依次计算后续的 else if 子句(如果有)。当其中某个 <表达式> 为 true 时,执行对应的本地代码块,if 结构执行结束,并返回本地代码块末尾的值。
  3. 当没有任何 <表达式> 为 true 且存在 else 子句时,执行 else 的本地代码块,if 结构执行结束,并返回本地代码块末尾的值。
  4. 当没有任何 <表达式> 为 true 且不存在 else 子句时,返回 na。

比如下面示例:

if (ta.crossover(source, lower))
      strategy.entry("BBandLE", strategy.long,

                                         stop=lower,comment="BBandLE")
else
      strategy.cancel(id="BBandLE")

说明:

  • ta.crossover(a, b) 是 Pine Script 的内置函数,用来判断序列 a 是否从下向上穿过序列 b。
  • source 和 lower 分别是你定义的价格序列或指标线,比如 source 可能是收盘价,lower 可能是布林带下轨。
  • 当 source 向上穿越 lower 时,条件为 true,if 结构的第一个代码块将被执行;否则执行 else 部分。
  • strategy.entry() 用于在策略中开仓。
  • "BBandLE" 是这个订单的唯一标识符(ID)。
  • strategy.long 表示开多仓(买入)。
  • stop=lower 表示这是一个止损单,如果价格跌破 lower(布林带下轨)就触发止损。
  • comment="BBandLE" 是给订单加一个备注,方便策略回测或日志查看。
  • strategy.cancel(id="BBandLE") 用于取消先前创建的、ID 为 "BBandLE" 的挂单。
  • 换句话说,如果 source 没有向上穿越 lower,就取消该布林带下轨的挂单,防止无效订单留在市场上。

Pine Script中的条件语句,除了if之外,还有一种switch模式。Pine Script 中的 switch 是一种用于在多个条件或多个值之间进行选择的结构化分支语句,它从一组 case 中只执行一个对应的代码块,并返回该代码块的值(或执行副作用),还可以指定默认返回值。它适用于当你需要根据多个可能值或多种情况来返回不同结果时,使代码更简洁、更清晰。与之相比,if 更适合处理二分或少量条件判断,而 switch 在大量条件、特别是基于同一个关键值进行匹配时更具可读性。关键区别在于:switch 是“结构化单分支”,不会像 if-else 链一样逐个判断多个条件,更适合多选一的场景,而 if 更灵活但结构可能更冗长。

switch 结构有两种形式。第一种根据某个关键表达式的不同值进行切换:

[[<declaration_mode>] [<type>] <identifier> = ]switch <expression>

    {<expression> => <local_block>}

    => <local_block>

第二种形式不使用关键表达式;它根据不同表达式的求值结果进行切换:

[[<declaration_mode>] [<type>] <identifier> = ]switch

    {<expression> => <local_block>}

    => <local_block>

其中:

  • 方括号 [] 中的部分可以出现零次或一次;
    花括号 {} 中的部分可以出现零次或多次。
  • <declaration_mode> 是变量的声明模式。
  • <type> 是可选项,就像 Pine Script 中几乎所有变量声明一样(参见 types)。
  • <identifier> 是变量名。
  • <expression> 可以是字面量、变量、表达式或函数调用。
  • <local_block> 由零个或多个语句组成,并以一个返回值结束,该返回值可以是一个值的元组。它必须缩进四个空格或一个制表符。
  • 赋给变量的值是 <local_block> 的返回值;如果没有任何 local block 被执行,则返回 na
  • 最后的 => <local_block> 允许你指定一个默认返回值,当结构中没有任何 case 被执行时使用。

来看一个使用表达式的 switch 示例:

A screenshot of a computer codeAI-generated content may be incorrect.

代码说明:

  • 首先定义一个指标,名称为 "Switch using an expression",描述为空,overlay=true 表示在价格图表上叠加显示。
  • 创建一个 字符串类型输入变量 maType:默认值为 "EMA",标签为 "MA type",可选值为 ["EMA", "SMA", "RMA", "WMA"]。用户可以在图表设置中选择不同类型的均线。
  • 创建一个 整数类型输入变量 maLength:默认值为 10,标签为 "MA length",最小值限制为 2。用于指定均线计算的周期长度。
  • 使用 带表达式的 switch,根据 maType 的值选择对应均线计算:
  • 如果 maType == "EMA" → 执行 ta.ema(close, maLength)
  • 如果 maType == "SMA" → 执行 ta.sma(close, maLength)
  • 如果 maType == "RMA" → 执行 ta.rma(close, maLength)
  • 如果 maType == "WMA" → 执行 ta.wma(close, maLength)
  • 如果没有匹配的值 → 执行 => 后的兜底代码块:
    • 触发运行时错误 runtime.error("No matching MA type found.")
    • 返回 float(na),确保返回类型与其他 block 一致,避免编译报错。
  • 将 ma 的值绘制到图表上,显示所选类型和周期的均线。

编写完代码后,我们可以回到图表中进行操作,在设置中通过我们创建的变量下拉框选择均线的类型,最终将所选均线显示在图表上。

A screen shot of a graphAI-generated content may be incorrect.

总结而言,Pine Script 提供了灵活的条件语句,包括 if 和 switch 两种形式。通过它们,我们可以根据不同条件或用户输入动态控制指标的计算与显示,实现个性化的图表逻辑。掌握这些条件语句,是编写高效、可交互指标的关键。

Michael Miao
December 8, 2025
每日财经快讯
比特币 Q4 过山车:谁在砸盘,谁在抄底?

2025 年第四季度,比特币再次走出一段教科书式的“暴涨暴跌”。10月初,在“Uptober”情绪与机构买盘推动下,比特币一度冲上约 12.6 万美元历史新高;随后伴随宏观风险升温与内部杠杆踩踏,价格一度回撤逾三成,11月下探至 8 万美元出头。进入 12 月,比特币在 9 万—9.5 万美元区间震荡,市场情绪从恐慌转向谨慎观望。

 

一、导火索:中美贸易再起波澜

这轮调整并非普通技术性回调,而是 宏观“黑天鹅”叠加币圈自身脆弱结构 的结果。10 月 10 日,美国威胁对全部中国商品加征高额关税,而此前中国扩大稀土出口管制,引发全球供应链与科技股剧烈波动。风险资产整体“去杠杆”,高 β 的加密资产首当其冲,比特币从高位被直接砸下,开启了随后数周的连续下跌。

 

二、链上与盘面:一场典型的“流动性踩踏”

从微观结构看,这更像是一场 流动性危机:

1.       在高位,合约市场长期维持高杠杆,多头拥挤。

2.       宏观利空落地后,做市商与算法交易迅速收缩仓位,订单簿深度被抽空。

3.       随着价格击穿关键支撑,大量多头触发强平,几小时内清算金额飙升,形成典型的“瀑布式”下跌。

与此同时, 现货 ETF 这把“双刃剑”开始反向发力。10 月以来,部分机构投资者选择在高位获利了结,11 月美国现货比特币 ETF 出现上市以来最严重的单月净流出,放大了抛压。

矿工端也并非毫无压力。价格跌回成本区间附近后,一些电价、算力成本较高的矿工现金流吃紧,陆续卖出库存以维持运营,令反弹的高度受到压制。

 

三、支撑逻辑:这次和以往不太一样的三点

尽管短期剧烈波动,但支撑比特币长期价值的 三根“底层支柱” 并未松动:

1.       监管确定性:GENIUS法案落地,7 月签署生效的《GENIUS 法案》,为美元计价的合规稳定币划定了清晰监管红线:发行方需按 1:1 持有现金或短债等高流动性资产;在发行主体破产时,稳定币持有人对这部分储备享有优先受偿权。这等于把合规稳定币正式纳入美国金融体系,为大型机构安心入场扫清了关键合规障碍。

2.       宏观流动性:美联储再度接近“放水拐点”。在10 月已降息 25bp 的基础上,市场普遍预期美联储在 12 月会议上将再次小幅降息。历史上,每一轮宽松周期开启前后,往往是风险资产估值重定价的窗口期,比特币过去数轮牛市也高度受益于全球流动性扩张。

3.       链上结构:筹码从“弱手”向“强手”转移。链上数据显示,11月以来,持有1000 枚以上 BTC 的大额地址数量重新上升,而散户与短线资金则在恐慌中减仓。换句话说,这轮下跌更多是 短期投机者被洗出局,长期资金则利用波动悄然加仓,比特币的持币结构正在变得更“重心下移、久期拉长”。

 

四、仍需警惕的两大风险

当然,做多情绪不能只看利多,也要看到潜在隐忧:

1.       监管分化风险:与美国选择“纳入监管”不同,中国在11 月底再度重申对虚拟货币交易的严格禁令,并首次将稳定币点名为重点整治对象。短期看,这会压缩亚洲场外通道的有效性,削弱东亚资金的边际买盘。

2.       资金结构的脆弱一面:现货ETF 引入了大规模、却高度“举棋不定”的机构资金,容易在波动时形成“追涨杀跌”的羊群效应;部分配置比特币的小型上市公司与高杠杆产品,仍面临净资产波动与条款触发的被动减仓风险,是未来需要持续跟踪的潜在“次级卖盘”。

 

五、结语:暴跌之后,站在谁的时间维度上?

综合来看,Q4 的这轮“过山车”,本质是 贸易战冲击 + 杠杆出清 + ETF 资金再平衡 叠加的结果。

从短期视角看,市场仍处于情绪修复期,价格在矿工成本与宏观预期之间拉锯,美联储12 月决议将是下一阶段方向的关键催化剂。

从中长期看,在美国稳定币立法落地、全球流动性边际宽松、以及持币结构逐步“机构化”的背景下,比特币正在从一只高波动交易资产,缓慢向“数字储备资产”的角色靠拢——只是这条路,从来不是一条直线。

Mill Li
December 5, 2025
Market Insights
BlackRock Backs Crypto, AI Memory Crisis, and Copper Pushes Key Level

Bitcoin rebounded 7% to touch $94,000 this week as two of the world's largest asset managers doubled down on their conviction that this cycle could break from crypto's boom-bust past.

BlackRock CEO Larry Fink and COO Rob Goldstein declared tokenisation "the next major evolution in market infrastructure,” comparing its potential to the introduction of electronic messaging systems in the 1970s.

Tokenised real-world assets have exploded from $7 billion to $24 billion in just one year, with certain projections expecting tokenised instruments to comprise 10-24% of portfolios by 2030.

Total RWA Value

Grayscale's latest research also put forward the case that this cycle will not follow Bitcoin’s predictable four-year pattern. Their analysis shows this cycle has had no parabolic price surge like previous cycles, and capital is flowing through regulated ETPs and corporate treasuries rather than retail speculation.

Grayscale has boldly predicted Bitcoin will reach new all-time highs next year based on this data, with near-term catalysts including a likely Federal Reserve rate cut and advancing crypto legislation.

AI Boom Creating a Memory Chip Supply Crisis

The AI revolution has had an unexpected ripple effect on conventional memory chips (DRAM).

Post-ChatGPT launch in 2022, chipmakers pivoted aggressively toward high-bandwidth memory (HBM) chips — the components that power AI data centres.

Samsung and SK Hynix, who control roughly 70% of the global DRAM market, transitioned large portions of their production away from conventional chips.

This worked in the short term, but data centre operators are now replacing old servers, and PC and smartphone sales have exceeded expectations (all of which require DRAM).

This saw DRAM supplier inventories fall to just two to four weeks in October, down from 13 to 17 weeks in late 2024.

DRAM spot prices nearly tripled in September this year, while in Tokyo's electronics district, popular gaming memory modules have surged from 17,000 yen to over 47,000 yen in recent weeks.

Google, Amazon, Microsoft, and Meta have all approached Micron with open-ended orders, agreeing to purchase whatever the company can deliver, regardless of price.

Samsung, Micron, and SK Hynix shares have rallied 96%, 168%, and 213% YTD, respectively, thanks to the increased DRAM demand.

Ironically, this recent price surge has seen DRAM chip margins approach those of the advanced HBM chips, meaning non-AI memory could now become equally profitable to produce.

Buying Pressure Pushes Copper Through Key Level

GO Markets
December 4, 2025
每日财经快讯
白银的大级别行情,或许正在路上

全球白银进入“缺货模式”,库存十年新低,价格可能迎来加速行情。

近期白银市场出现了一系列结构性变化,从国内交易所库存下降、出口增加,到月间价差反转、产业需求走强,多项指标均显示现货端正在收紧。同时,金银比持续下探,进入近年来的低位区间。这些因素共同构成了目前白银行情的核心背景。

  1. 十年以来的最低库存水平

从公开数据来看,上期所与上金所的白银库存已降至 2015 年以来的低位,大量的白银被运往伦敦,来缓解推高银价带来的市场紧张情况。库存下降的幅度不仅明显,而且具有持续性。这一趋势与两个现实因素相关:

  • 年初以来白银出口量保持高位;
  • 国内可用于交割的现货逐渐减少。
A graph with a line graph and numbersAI-generated content may be incorrect.

(白银和黄金库存,资料来源:彭博社)

库存下降直接影响到市场的可交割合约、产业采购与流动性。对于贵金属而言,库存处于历史低位通常意味着现货供应偏紧,后续价格对供需变化的敏感度提升。

虽然低库存本身并不一定等同于价格上涨,但若同时伴随现货溢价与需求扩张,则对价格的影响会更直接。从目前的数据来看,白银正处在这种组合情形中。

  1. 期货月间价差持续反映现货偏紧

近期,近月白银价格高于次月合约,这是典型的现货溢价结构。在贵金属中,这类结构的出现通常只有两种原因:现货不足或短期采购需求明显增加。

A graph showing the time of the yearAI-generated content may be incorrect.

(资料来源:彭博社)

从上图可以看到,多个合约间呈现“近高远低”的结构。这说明持货方更愿意留在现货端,而非换到远端合约。对于工业需求占比较高的白银,现货价差变化往往比盘面价格更能反映供需状态。

历史上,铜、镍在进入上涨周期前,也普遍经历现货溢价阶段。白银当前的结构与这些阶段具有可比性。

  1. 出口、贸易流向与区域供需差异

近期中国白银出口量创历史新高,加上部分亚洲地区政策调整(如印度税制变动),导致区域间的货源流动出现新的分配方式。

其中两点较为关键:

  • 印度对白银征税,使部分供应转向美国市场,美国近期的白银进口量明显上升。
  • 亚洲市场的可用现货因此被分流,国内库存进一步缩减。

这种全球流向的变化不仅影响区域价格,还可能拉大各地现货与期货之间的差距。区域供需错配对贵金属价格影响往往具有滞后效应,但一旦积累,其影响会持续数月。

  1. 产业需求仍在增长,尤其是光伏领域

光伏产业对白银的消耗在过去几年保持稳定增长,白银约有四分之一的工业需求来自光伏产业链。第四季度通常是光伏装机较为密集的时期,因此对应的银浆需求往往有所增加。

在多个需求稳定甚至偏强的行业中,光伏仍是拉动白银实物消费的重要部分。需求走强叠加库存下降,使得现货市场对价格变化更加敏感。

  1. 金银比下探至阶段性低位

金银比近月持续回落,目前处于近年来的低位区间。金银比是贵金属领域常用的相对指标,具有一定市场情绪和资金流向指示意义。

A graph with lines and numbersAI-generated content may be incorrect.

(资料来源:Trading view)

金银比走低通常意味着以下两点:

  • 黄金先行上涨并维持稳态;
  • 资金开始关注相对滞后的白银。

在历史周期中,当金银比处于低位或持续回落阶段时,白银的相对表现往往具有更高弹性。特别是在库存下降和现货溢价同时存在的背景下,金银比的变化更可能反映资金变化,而非单纯的价格波动。

需要强调的是,金银比并不直接决定价格,但当它与供需紧张同时出现时,往往意味着市场对白银的预期正在边际改善。

  1. 综合判断

将库存、月间价差、出口与贸易方向、产业需求及金银比放在一起分析,可以得到一个相对清晰的结论:

白银正在经历一轮以现货紧张为核心的结构性变化。

这种变化带来的影响包括:

  • 短期走势可能以波动为主,但回调空间受库存与现货需求支撑;
  • 中期趋势偏强,因为库存恢复一般需要时间,而出口与产业需求并未出现下降;
  • 若金价继续维持强势,白银的相对涨幅可能更高,这与金银比的阶段性变化一致。

从数据结构来看,白银目前处于供需偏紧阶段,这一阶段可能持续至库存出现明显回升或产业需求放缓。在此之前,价格更容易受到现货端的推动。

Christine Li
December 4, 2025
Trading strategies
Featured
The Anatomy of a Higher-Probability Trading Setup

Every trader has had that moment where a seemingly perfect trade goes astray. 

You see a clean chart on the screen, showing a textbook candle pattern; it seems as though the market planets have aligned, and so you enthusiastically jump into your trade.

But before you even have time to indulge in a little self-praise at a job well done,  the market does the opposite of what you expected, and your stop loss is triggered.

This common scenario, which we have all unfortunately experienced, raises the question: What separates these “almost” trades from the truly higher-probability setups? 

The State of Alignment

A high-probability setup isn’t necessarily a single signal or chart pattern. It is the coming together of several factors in a way that can potentially increase the likelihood of a successful trade. 

When combined, six interconnected layers can come together to form the full “anatomy” of a higher-probability trading setup:

  • Context
  • Structure
  • Confluence
  • Timing
  • Management 
  • Psychology

When more of these factors are in place, the greater the (potential) probability your trade will behave as expected.

Market Context 

When we explore market context, we are looking at the underlying background conditions that may help some trading ideas thrive, and contribute to others failing.

Regime Awareness

Every trading strategy you choose to create has a natural set of market circumstances that could be an optimum trading environment for that particular trading approach.

For example:

  • Trending regimes may favour momentum or breakout setups.
  • Ranging regimes may suit mean-reversion or bounce systems.
  • High-volatility regimes create opportunity but demand wider stops and quicker management.

Investing time considering the underlying market regime may help avoid the temptation to force a trending system into a sideways market.

Simply looking at the slope of a 50-period moving average or the width of a Bollinger Band can suggest what type of market is currently in play. 

Sentiment Alignment

If risk sentiment shifts towards a specific (or a group) of related assets, the technical picture is more likely to change to match that. 

For example, if the USD index is broadly strengthening as an underlying move, then looking for long trades in EURUSD setups may end up fighting headwinds.

Setting yourself some simple rules can help, as trading against a potential tidal wave of opposite price change in a related asset is not usually a strong foundation on which to base a trading decision.

Key Reference Zones

Context also means the location of the current price relative to levels or previous landmarks.

Some examples include:

  • Weekly highs/lows
  • Prior session ranges, e.g. the Asian high and low as we move into the European session
  • Major “round” psychological numbers (e.g., 1.10, 1000)

A long trading setup into these areas of market importance may result in an overhead resistance, or a short trade into a potential area of support may reduce the probability of a continuation of that price move before the trade even starts.

Market Structure 

Structure is the visual rhythm of price that you may see on the chart. It involves the sequences of trader impulses and corrections that end up defining the overall direction and the likelihood of continuation:

  • Uptrend: Higher highs (HH) and higher lows (HL)
  • Downtrend: Lower highs (LH) and lower lows (LL)
  • Transition: Break in structure often followed by a retest of previous levels.

A pullback in an uptrend followed by renewed buying pressure over a previous price swing high point may well constitute a higher-probability buy than a random candle pattern in the middle of nowhere.

Compression and Expansion

Markets move through cycles of energy build-up and release. It is a reflection of the repositioning of asset holdings, subtle institutional accumulation, or a response to new information, and may all result in different, albeit temporary, broad price scenarios.

  • Compression: Evidenced by a tightening range, declining ATR, smaller candles, and so suggesting a period of indecision or exhaustion of a previous price move, 
  • Expansion: Evidenced by a sudden breakout, larger candle bodies, and a volume spike, is suggestive of a move that is now underway.

A breakout that clears a liquidity zone often runs further, as ‘trapped’ traders may further fuel the move as they scramble to reposition.

A setup aligned with such liquidity flows may carry a higher probability than one trading directly into it.

Confluence 

Confluence is the art of layering independent evidence to create a whole story. Think of it as a type of “market forensics” — each piece of confirmation evidence may offer a “better hand’ or further positive alignment for your idea.

There are three noteworthy types of confluence:

  1. Technical Confluence – Multiple technical tools agree with your trading idea:
  • Moving average alignment (e.g., 20 EMA above 50 EMA) for a long trade
  • A Fibonacci retracement level is lining up with a previously identified support level.
  • Momentum is increasing on indicators such as the MACD.
  1. Multi-Timeframe Confluence – Where a lower timeframe setup is consistent with a higher timeframe trend. If you have alignment of breakout evidence across multiple timeframes, any move will often be strengthened by different traders trading on different timeframes, all jumping into new trades together.

3. Volume Confluence – Any directional move, if supported by increasing volume, suggests higher levels of market participation. Whereas falling volume may be indicative of a lesser market enthusiasm for a particular price move.

Confluence is not about clutter on your chart. Adding indicators, e.g., three oscillators showing the same thing, may make your chart look like a work of art, but it offers little to your trading decision-making and may dilute action clarity.

Think of it this way: Confluence comes from having different dimensions of evidence and seeing them align. Price, time, momentum, and participation (which is evidenced by volume) can all contribute.

Timing & Execution 

An alignment in context and structure can still fail to produce a desired outcome if your timing is not as it should be. Execution is where higher probability traders may separate themselves from hopeful ones.

Entry Timing

  • Confirmation: Wait for the candle to close beyond the structure or level. Avoid the temptation to try to jump in early on a premature breakout wick before the candle is mature.
  • Retests: If the price has retested and respected a breakout level, it may filter out some false breaks that we will often see.
  • Then act: Be patient for the setup to complete. Talking yourself out of a trade for the sake of just one more candle” confirmation may, over time, erode potential as you are repeatedly late into trades.

Session & Liquidity Windows

Markets breathe differently throughout the day as one session rolls into another. Each session's characteristics may suit different strategies. 

For example:

  • London Open: Often has a volatility surge; Range breaks may work well.
  • New York Overlap: Often, we will see some continuation or reversal of morning trends.
  • Asian Session: A quieter session where mean-reversion or range trading approaches may do well

Trade Management 

Managing the position well after entry can turn probability into realised profit, or if mismanaged, can result in losses compounding or giving back unrealised profit to the market. 

Pre-defined Invalidation

Asking yourself before entry: “What would the market have to do to prove me wrong?” could be an approach worth trying. 

This facilitates stops to be placed logically rather than emotionally. If a trade idea moves against your original thinking, based on a change to a state of unalignment, then considering exit would seem logical. 

Scaling & Partial Exits

High-probability trade entries will still benefit from dynamic exit approaches that may involve partial position closes and adaptive trailing of your initial stop.

Trader Psychology 

One of the most important and overlooked components of a higher-probability setup is you.

It is you who makes the choices to adopt these practices, and you who must battle the common trading “demons” of fear, impatience, and distorted expectation.

Let's be real, higher-probability trades are less common than many may lead you to believe. 

Many traders destroy their potential to develop any trading edge by taking frequent low-probability setups out of a desire to be “in the market.” 

It can take strength to be inactive for periods of time and exercise that patience for every box to be ticked in your plan before acting.

Measure “You” performance

Each trade you take becomes data and can provide invaluable feedback. You can only make a judgment of a planned strategy if you have followed it to the letter. 

Discipline in execution can be your greatest ally or enemy in determining whether you ultimately achieve positive trading outcomes.

Bringing It All Together – The Setup Blueprint

Final Thoughts

Higher-probability setups are not found but are constructed methodically. 

A trader who understands the “higher-probability anatomy” is less likely to chase trades or feel the need to always be in the market. They will see merit in ticking all the right boxes and then taking decisive action when it is time to do so. 

It is now up to you to review what you have in place now, identify gaps that may exist, and commit to taking action!

Mike Smith
December 3, 2025
每日财经快讯
零利率时代结束?日本央行加息预期触发跨市场连锁反应
A graph showing the price of a stock marketAI-generated content may be incorrect.

就在市场对日本央行加息的预期不断升温之际,日本本土资产率先出现剧烈波动。
本周一,日本东京股市遭遇大幅抛售。其中最具代表性的 日经225指数盘中一度暴跌超过 1000 点,跌幅高达 2.05%,成为近月以来最大单日回调之一。

导致这场暴跌的直接导火索,正是日本央行行长植田和男的最新发言。他在当天表示,即将在 12 月 18 日、19 日召开的货币政策会议上,“将对是否加息作出恰当判断”。
这一表述立即被市场解读为强烈的加息信号——日本央行可能在本月真正迈出加息一步,结束长达数十年的超宽松时代

随之而来的,是日本国债遭遇集中抛售。

市场预期迅速上升:12 月加息概率从 30% 飙至 80%

根据彭博社的数据,市场对日本央行加息的预期在短短两周内急速升温:两周前,投资者对12月加息的概率仅为30%,而如今这一预期已飙升至80%,甚至预计到明年1月会议前,加息的可能性将超过90%。全球资产正在基于这一预期重新定价。

而推动这一预期变化的根本原因在于:
日本通胀不仅持续高于 2% 的目标,而且结构性因素(如工资上涨)正在取代外部输入性因素,增强了通胀的黏性与持续性。

国债收益率“全线起飞”:

A graph with blue lineAI-generated content may be incorrect.

从最新数据显示,日本国债收益率本轮的上行速度可谓迅猛:

  • 10年期日本国债收益率上升至 1.840% —— 创 2008 年 6 月以来新高。
  • 5 年期收益率涨至 1.385%
  • 两年期收益率一度升至 1.021%,创下 2008年以来新高。

两年期国债因为对政策变化最为敏感,被视作衡量市场预期的“风向标”。这一次其收益率大幅上行,几乎是在第一时间反映投资者对日本央行即将加息的判断。过去数十年,其两年期国债几乎一直在-0.2%~0.1%之间徘徊,此次突破1%也意味着市场正经历一次政策预期的快速重估——投资者需要重新考虑日元资产和全球债市的风险与机会。

外汇方面,日元快速走强:

长期以来,日本超低利率为全球投资者提供了“廉价资金来源”——投资者以极低成本借入日元,再投入到海外收益率更高的资产中,形成巨量的套利交易链条。一旦日本央行释放“加息”的信号,全球依赖“日元套利交易”(Yen Carry Trade)的投资者随即开始动摇。
原因很简单:只要日本加息或市场预期加息增强,投资者就会被迫平仓套息交易。

平仓行为将导致大量资金从全球市场回流日本,抛售外国债券和股票,买入日元。

因此日元走强,美元对日元周一走低至155.60。

这进一步加剧了全球债市和股市的波动。全球流动性收紧,比特币等加密资产率先下跌,单日甚至跌超5%,反映了市场对高利率环境的担忧。高利率意味着资金成本上升、市场流动性下降,因此最敏感的就是加密货币等风险资产。

财政部的国债增发计划:

上周五28日,日本财务省宣布了新的国债增发计划。
为了为首相高市早苗的刺激经济方案筹措资金,日本政府拟:

  • 两年期国债增发 3000 亿日元
  • 五年期国债增发 3000 亿日元
  • 国库券发行量增加 6.3 万亿日元

上周宣布增发中短期国债,本就会推高市场利率水平;叠加日本央行加息预期迅速升温,令国债收益率出现更强的上行压力。两者共同作用,不仅加剧了日元升值,也放大全球市场对日本政策即将转向的敏感度。

小结:

从股市暴跌、国债收益率急升,到日元走强、日本政府增发国债——这一系列连锁反应表明:

日本长期作为全球金融体系的“低息资金池”,一旦其货币政策正式转向,不仅会冲击日元和日本本土股市,更可能传导至亚洲股市、外汇市场、黄金、比特币等关键资产产生了连锁反应,引发新一轮跨市场定价重塑。

https://tradingeconomics.com/japan/2-year-note-yield

http://www.news.cn/20251201/47f474ba96f148f7bed82fb93d02ae13/c.html

https://cn.investing.com/rates-bonds/japan-5-year-bond-yield

Alena Wang
December 3, 2025